On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets
نویسندگان
چکیده
Classification with imbalanced data-sets supposes a new challenge for researches in the framework of data mining. This problem appears when the number of examples that represents one of the classes of the data-set (usually the concept of interest) is much lower than that of the other classes. In this manner, the learning model must be adapted to this situation, which is very common in real applications. In this paper, we will work with fuzzy rule based classification systems using a preprocessing step in order to deal with the class imbalance. Our aim is to analyze the behaviour of fuzzy rule based classification systems in the framework of imbalanced data-sets by means of the application of an adaptive inference system with parametric conjunction operators. Our results shows empirically that the use of the this parametric conjunction operators implies a higher performance for all data-sets with different imbalanced ratios. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملImproving the Performance of Fuzzy Rule Based Classification Systems for Highly Imbalanced Data-Sets Using an Evolutionary Adaptive Inference System
In this contribution, we study the influence of an Evolutionary Adaptive Inference System with parametric conjunction operators for Fuzzy Rule Based Classification Systems. Specifically, we work in the context of highly imbalanced data-sets, which is a common scenario in real applications, since the number of examples that represents one of the classes of the data-set (usually the concept of in...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملارائهروش جدید مبتنیبر برنامهنویسی ژنتیک برای وزندهی قوانین فازی در طبقهبندی نامتوازن
In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009